B. Sc (Information Tech	Semester – I		
Course Name: Digital Electronic	Course Code: USIT102		
Periods per week (1 Period is 50 minutes)		5	
Credits		2	
	Hours	Marks	
Evaluation System	Theory Examination	21/2	75
	Internal		25

Unit	Details	Lectures		
Ι	Number System:			
	Analog System, digital system, numbering system, binary number system, octal number system, hexadecimal number system, conversion from one number system to another, floating point numbers, weighted codes binary coded decimal, non-weighted codes Excess – 3 code, Gray code, Alphanumeric codes – ASCII Code, EBCDIC, ISCII Code, Hollerith Code, Morse Code, Teletypewriter (TTY), Error detection and correction, Universal Product Code, Code conversion. Binary Arithmetic: Binary addition, Binary subtraction, Negative number representation, Subtraction using 1's complement and 2's complement, Binary multiplication and division, Arithmetic in octal number system, Arithmetic in hexadecimal number system, BCD and Excess – 3 arithmetic.	12		
II	 Boolean Algebra and Logic Gates: Introduction, Logic (AND OR NOT), Boolean theorems, Boolean Laws, De Morgan's Theorem, Perfect Induction, Reduction of Logic expression using Boolean Algebra, Deriving Boolean expression from given circuit, exclusive OR and Exclusive NOR gates, Universal Logic gates, Implementation of other gates using universal gates, Input bubbled logic, Assertion level. Minterm, Maxterm and Karnaugh Maps: Introduction, minterms and sum of minterm form, maxterm and Product of maxterm form, Reduction technique using Karnaugh maps – 2/3/4/5/6 variable K-maps, Grouping of variables in K-maps, K-maps for product of sum form, minimize Boolean expression using K-map and obtain K-map from Boolean expression, Quine Mc Cluskey Method. 			
III	Combinational Logic Circuits: Introduction, Multi-input, multi-output Combinational circuits, Code converters design and implementations Arithmetic Circuits: Introduction, Adder, BCD Adder, Excess – 3 Adder, Binary Subtractors, BCD Subtractor, Multiplier, Comparator.	12		
IV	Multiplexer, Demultiplexer, ALU, Encoder and Decoder: Introduction, Multiplexer, Demultiplexer, Decoder, ALU, Encoders. Sequential Circuits: Flip-Flop: Introduction, Terminologies used, S-R flip-flop, D flip-fop, JK flip- flop, Race-around condition, Master – slave JK flip-flop, T flip-flop,	12		

	conversion from one type of flip-flop to another, Application of flip- flops	
V	flops.Counters:Introduction, Asynchronous counter, Terms related to counters, IC7493 (4-bit binary counter), Synchronous counter, Bushing, Type TDesign, Type JK Design, Presettable counter, IC 7490, IC 7492,Synchronous counter ICs, Analysis of counter circuits.Shift Register:Introduction, parallel and shift registers, serial shifting, serial-in serial-out, serial-in parallel-out, parallel-in parallel-out, Ring counter,Johnson counter, Applications of shift registers, Pseudo-random binarysequence generator, IC7495, Seven Segment displays, analysis of shiftcounters.	12

Books and References:							
Sr. No.	Title	Author/s	Publisher	Edition	Year		
1.	Digital Electronics and	N. G. Palan	Technova				
	Logic Design						
2.	Make Electronics	Charles Platt	O'Reilly	1 st	2010		
3.	Modern Digital Electronics	R. P. Jain	Tata	3 rd			
			McGraw				
			Hill				
4.	Digital Principles and	Malvino and	Tata				
	Applications	Leach	McGraw				
			Hill				
5.	Digital Electronics:	Anil K. Maini	Wiley		2007		
	Principles, Devices and						
	Applications,						